Sparse + Low Rank Decomposition of Annihilating Filter-based Hankel Matrix for Impulse Noise Removal

نویسندگان

  • Kyong Hwan Jin
  • Jong Chul Ye
چکیده

Recently, so called annihilating filer-based low rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch corresponds to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in the image domain to estimate the missing pixels. By extending this idea, here we propose a novel impulse noise removal algorithm using sparse + low rank decomposition of an annihilating filter-based Hankel matrix. The new approach, what we call the robust ALOHA, is motivated by the observation that an image corrupted with impulse noises has intact pixels; so the impulse noises can be modeled as sparse components, whereas the underlying image can be still modeled using a low-rank Hankel structured matrix. To solve the sparse + low rank decomposition problem, we propose an alternating direction method of multiplier (ADMM) method with initial factorized matrices coming from low rank matrix fitting (LMaFit) algorithm. To adapt the local image statistics that have distinct spectral distributions, the robust ALOHA is applied patch by patch. Experimental results from two types of impulse noises random valued impulse noises and salt/pepper noises for both single channel and multi-channel color images demonstrate that the robust ALOHA outperforms the existing algorithms up to 8dB in terms of the peak signal to noise ratio (PSNR).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MR artifacts removal using sparse + low rank decomposition of annihilating filter based Hankel matrix

In this paper, we propose a sparse and low-rank decomposition of annihilating filter-based Hankel matrix for removing MR artifacts such as motion, RF noises, or herringbone artifacts. Based on the observation that some MR artifacts are originated from k-space outliers, we employ a recently proposed image modeling method using annihilating filter-based low-rank Hankel matrix approach (ALOHA) to ...

متن کامل

In vivo accelerated MR parameter mapping using annihilating filter - based low rank Hankel matrix ( ALOHA )

The purpose of this study is to develop an accelerated MR parameter mapping technique. For accelerated T1 and T2 mapping, spin-echo inversion recovery and multi-echo spin echo pulse sequences were redesigned to perform undersampling along phase encoding direction. The highly missing k-space were then interpolated by using recently proposed annihilating filter based low-rank Hankel matrix approa...

متن کامل

Improved Temporal Resolution TWIST Reconstruction using Annihilating Filter-based Low-rank Hankel Matrix

In dynamic contrast enhanced (DCE) MRI, temporal and spatial resolution can be improved by timeresolved angiography with interleaved stochastic trajectories (TWIST). However, due to view sharing, the temporal resolution of TWIST is not a true one. To overcome this limitation, we employ recently proposed annihilating filter-based low rank Hankel matrix approach (ALOHA) that interpolates the miss...

متن کامل

Reference-free single-pass EPI Nyquist ghost correction using annihilating filter-based low rank Hankel matrix (ALOHA).

PURPOSE MR measurements from an echo-planar imaging (EPI) sequence produce Nyquist ghost artifacts that originate from inconsistencies between odd and even echoes. Several reconstruction algorithms have been proposed to reduce such artifacts, but most of these methods require either additional reference scans or multipass EPI acquisition. This article proposes a novel and accurate single-pass E...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1510.05559  شماره 

صفحات  -

تاریخ انتشار 2015